# Pulsed Power Engineering: Switching Devices

U.S. Particle Accelerator School University of New Mexico

Craig Burkhart & Mark Kemp SLAC National Accelerator Laboratory June 24 - 28, 2019





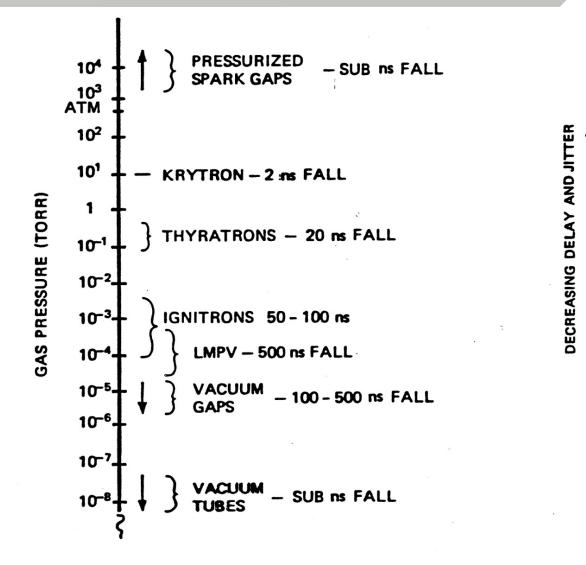
# **Ideal Switch**



- V = ∞
- | = ∞
- Closing/opening time = 0
- -L = C = R = 0
- Simple to control
- No delay or jitter
- Lasts forever
- Never fails

# **Switches**

-SLAC


- Electromechanical
- Vacuum
- Gas
  - Spark gap
  - Thyratron
  - Ignitron
  - Plasma Opening
- Solid state
  - Diodes
    - Diode opening switch
  - Thyrsitors
    - Electrically triggered
    - Optically triggered
    - dV/dt triggered
  - Transistors
    - IGBT
    - MOSFET

# **Switches**

- Electromechanical
  - Open frame relay
    - To very high voltages, set by size of device
    - Commercial devices to ~0.5 MV, ~50 kA
      - Ross Engineering Corp.
    - Closing time ~10's of ms typical
      - Large jitter, ~ms typical
    - Closure usually completed by arcing
      - Poor opening switch
    - Commonly used as engineered ground
  - Vacuum relay
    - Models that can open under load are available
    - Commercial devices
      - Maximum voltage ~0.1 MV / current ~0.1 kA
      - Tyco-kilovac
      - Gigavac

Jun. 24-28, 2019 USPAS Pulsed Power Engineering

#### **Gas/Vacuum Switch Performance vs. Pressure**



Jun. 24-28, 2019

USPAS Pulsed Power Engineering

C. Burkhart & M. Kemp

LONGER RECOVERY TIME

5

# Vacuum Tube (Switch Tube)

- Space-charge limited current flow
  - $V_{ON} \alpha I^{2/3}$
  - High power tubes have high dissipation
- Similar opening/closing characteristics
- Maximum voltage ~0.15 MV
- Maximum current ~0.5 kA, more typically << 100 A</li>
- HV grid drive
- Decreasing availability
- High Cost

# Spark Gaps

- Closing switch
- Generally inexpensive in simplest form: two electrodes with a gap
- Can operated from vacuum to high pressure (both sides of Paschen Curve)
- Can use almost any gas or gas mixture as a dielectric. (air, dry nitrogen, SF<sub>6</sub>, CO<sub>2</sub>, etc.) There are also liquid spark gaps (shock wave).
- Wide operating range
  - kV to MV
  - Amps to MA
- Time jitter ranges from *ns* for triggered gaps to 100's of µs (or longer) for self-breaking overvoltage gaps
  - Low jitter
    - Trigger voltage ~ switch voltage
    - High dV/dt trigger

# Spark Gaps (cont.)

- Repetition rates usually single shot but low kHz possible for burst mode
- $L_{arc} \sim 15 \text{ nH/cm}$ 
  - Rail-gap switch with multiple arc channels  $\rightarrow$  lower inductance
- Lifetime limited
  - Erosion of electrodes (tungsten, copper, stainless steel, steel, brass, molybdenum, special alloys)
  - Debris across insulating surfaces
- Performance affected by temperature, pressure, electrode materials, surface condition of electrode, condition of insulators, operating conditions, etc.
- Devices are commercially available

### **Commercial Spark Gap**

#### **Triggered Spark Gap Ratings**

| PerkinElmer<br>Model<br>No. | O -A<br>Range, kV<br>Min/Max<br>(1,10) |      | SBV, kV | V <sub>T</sub><br>Min Trig<br>(kV Open<br>Circuit | Trigger<br>Mode | Recommended<br>PerkinElmer<br>Transformer | Typical Delay Time*<br>* when operated in mode A<br>(Nanoseconds)<br>At 70% SBV At 40% SBV |       | Simultaneous Ratings<br>Crowbar Service,<br>Typical Life:<br>5000-20,000 Shots | Simultaneous Ratings<br>Repetitive Switching<br>Typical Life:<br>1-5 Million Shots |  |
|-----------------------------|----------------------------------------|------|---------|---------------------------------------------------|-----------------|-------------------------------------------|--------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
|                             | (2)                                    | (3)  | (4)     | (5)                                               |                 | (6, 7)                                    |                                                                                            |       | (11)                                                                           | (11)                                                                               |  |
| GP-89                       | 0.7                                    | 2.1  | 2.6     |                                                   | С               | TR-148A                                   | 100                                                                                        | 1000  |                                                                                |                                                                                    |  |
| GP-90                       | 1.3                                    | 3.4  | 4.2     | 10                                                | С               | - TR-1908                                 |                                                                                            |       | 5 kA peak                                                                      | 3 milicoulombs/shot                                                                |  |
| GP-91                       | 4.4                                    | 10   | 12.5    | 10                                                | A,C             |                                           |                                                                                            |       | 0.1 coulomb                                                                    | lb = 35 mAdc                                                                       |  |
| GP-93                       | 8                                      | 20   | 25      |                                                   | A, C            |                                           |                                                                                            |       |                                                                                | lp = 6 Aac                                                                         |  |
| GP-82B                      | 0.4                                    | 1.6  | 2       |                                                   | ĄВ              | TR-148A                                   | 30                                                                                         | 300   |                                                                                |                                                                                    |  |
| GP-31B                      | 2                                      | 6    | 7.5     | 10                                                | A               | TR-1808                                   |                                                                                            |       | 7.5 kA peak                                                                    | 4 millcoulombs/shot                                                                |  |
| GP-20B                      | 3.5                                    | - 11 | 14      | 10                                                |                 |                                           |                                                                                            |       | 0.2 coulomb                                                                    | lb = 60 mAdc                                                                       |  |
| GP-46B                      | 8                                      | 20   | 25      |                                                   |                 |                                           |                                                                                            |       |                                                                                | lp = 8 Aac                                                                         |  |
| GP-85                       | 2                                      | 6    | 8       | 20                                                | ĄΒ              | TR-1795                                   | 30                                                                                         | 300   |                                                                                |                                                                                    |  |
| GP-86                       | 6                                      | 15   | 20      |                                                   | A               | TR-1808<br>TR1700                         |                                                                                            |       | 25 kA peak                                                                     | 4 millicoulombs/shot<br>lb = 100 mAdc                                              |  |
| GP-87                       | 10                                     | 24   | 30      |                                                   |                 |                                           |                                                                                            |       | 0.4 coulomb                                                                    |                                                                                    |  |
| GP-70                       | 12                                     | 36   | 42(8)   |                                                   |                 |                                           |                                                                                            |       |                                                                                | lp = 10 Aac                                                                        |  |
| GP-30B                      | 2                                      | 6    | 7.5     |                                                   | ΑB              | TR-1795<br>TR-1700                        | 30                                                                                         | 300   |                                                                                |                                                                                    |  |
| GP-22B                      | 6                                      | 15   | 19      | 20                                                | A               |                                           |                                                                                            |       | 50 kA peak                                                                     |                                                                                    |  |
| GP-12B                      | 10                                     | - 24 | 30      |                                                   |                 |                                           |                                                                                            |       | 0.5 coulomb                                                                    |                                                                                    |  |
| GP-14B                      | 12                                     | 36   | 42(8)   |                                                   |                 |                                           |                                                                                            |       |                                                                                | 10 millicoulombs/shot                                                              |  |
| GP-41B                      | 12                                     | 36   | 42      |                                                   | ĄВ              | TR-1795                                   | 30                                                                                         | 300   | Peak currents up to 100                                                        | lb = 200 mAdc                                                                      |  |
| GP-32B                      | 20                                     | 48   | 60(8)   | 20                                                | A               | TR-1700                                   |                                                                                            |       | kA and charge transfer                                                         | lp = 15 Aac                                                                        |  |
| GP-15B                      | 25                                     | 60   | 86(8)   |                                                   |                 |                                           |                                                                                            |       | up to 5 coulombs are<br>obtainable at reduced                                  |                                                                                    |  |
| GP-74B                      | 40                                     | 100  | 120(8)  | 20                                                | А               | TR-1795                                   | 30                                                                                         | 300   | life (100-1000 shots).                                                         |                                                                                    |  |
| GP-81B                      | 40                                     | 100  | 120(9)  |                                                   | -               | TR-1700                                   | 553                                                                                        | 10000 |                                                                                |                                                                                    |  |

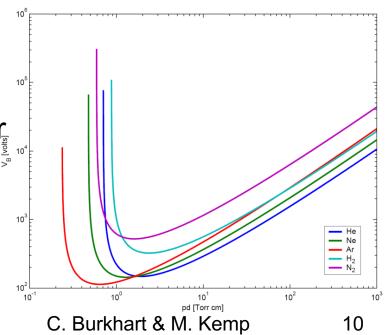
# Triggered Spark Gaps

SLAC

Ceramic-Metal



#### Features

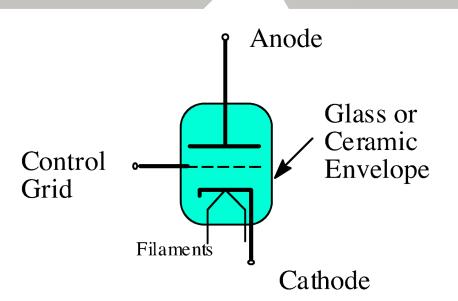

- Fast switching operation
- High voltage holdoff
- Ceramic-metal construction
- No warm up period
- High current capability
- Long life

C. Burkhart & M. Kemp

9

### **Thyratron: Low-Pressure Gas Switch**

- High voltage: kV to ~ 100kV (normally ~ 30-40kV per internal gap)
- Maximum peak current 20-40 kA
- Closing switch ONLY, forward drop ~100 V
- Gas filled: 0.1-5.0 torr hydrogen or deuterium and hot cathode
  - Operate on the low pressure side of Paschen minimum
- High repetition rate: limited by recovery time after conduction of 30-100µs
- Low jitter (<1ns) with appropriate trigger
- Limited di/dt (emission limitations of hot cathode)

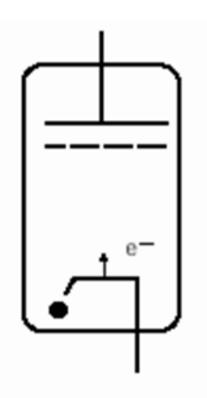



# **Thyratrons (cont.)**

- Turn-on time (anode voltage fall time)
  - 20 ns typical
  - <5 ns for special tubes</p>
- Lifetime usually limited by cathode depletion (1-2 years of continuously on operation) or loss of ability to control gas pressure (causes misfires, reduction of standoff voltage capability)
- Limited pulse duration
- Low average current rating
- Significant voltage reversal (>4 kV) during recovery can damage tube

# Thyratrons

- Envelope: glass or ceramic (high power tubes)
- Anode materials: molybdenum, copper
- Grid materials: copper, molybdenum
- Cathode material: BaO, SrO, CaO coating on tungsten or barium aluminate impregnated tungsten
- Reservoir (maintains gas pressure over life of tube) is a hydride material such as titanium, tantalum, etc.



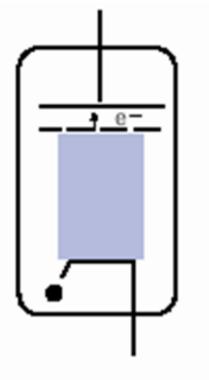



SLAO

# **Thyratron Operation**

- Three phases of thyratron operation
  - Triggering & commutation (closure)
  - Steady-state conduction
  - Recovery (opening)
- Positive polarity pulse applied to grid
- Cathode electrons flowing to grid ionize gas in K-grid gap

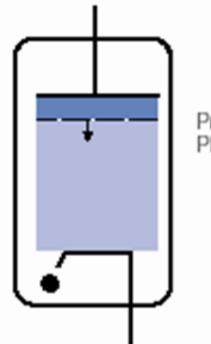



 Trigger pulse applied to control grid.

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

# **Thyratron Operation**

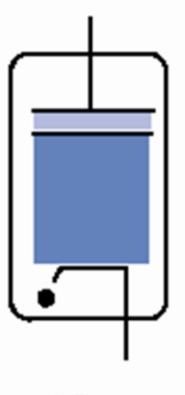

- Plasma fills K-grid gap, grid-cathode breakdown
- Plasma electrons flow through grid and are accelerated to anode
- Electrons flowing to anode ionize gas in A-grid gap



2. Grid-cathode breakdown.

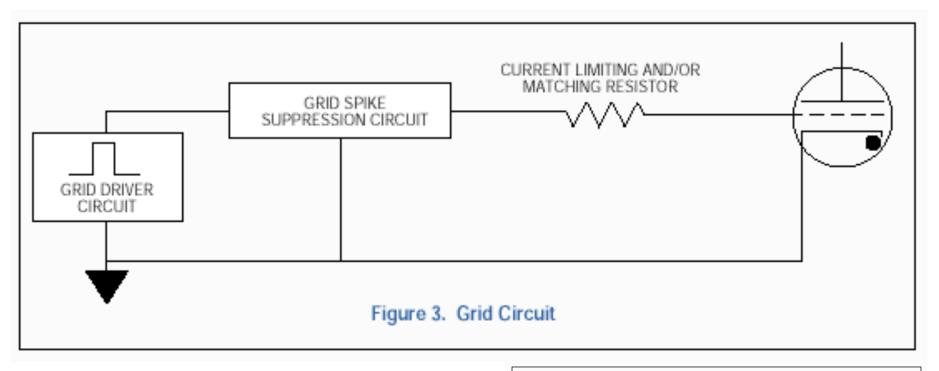
# **Thyratron Operation (cont.)**

- Dense plasma forms between grid and anode, creating a low resistance electrical connection
- Grid is pulsed to anodic potential
  - Trigger circuit must be protected from transient
- Plasma front propagates into gridcathode gap




Propagating Plasma Front

 Electrons from grid-cathode region create a dense plasma in the grid-anode region. The plasma front propagates toward the cathode via breakdown of gas.


# **Thyratron Operation (cont.)**

- Plasma connects to cathode, completing switch closure
- Begin steady-state conduction
- Once source energy is dissipated,
  - Current stops flowing through switch
  - Plasma cools
  - Ions/electrons recombine (~ms)
  - Switch is no longer conductive
- Recovery complete



Closure

# **Thyratron Trigger Circuit**



(a) Filter (b) Ener MOV (c) (c) MOV (c) Spark Gap

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

C. Burkhart & M. Kemp

SLAC

# **Commercial Thyratron Examples**



| Туре     | Peak<br>Anode<br>Voltage<br>epy (kV) | Peak<br>Anode<br>Current<br>ib (a) | Average<br>Anode<br>Current<br>Ib (Adc) | RMS<br>Anode<br>Current<br>Ip (Aac) | Plate<br>Dissipa-<br>tion<br>Factor<br>Pb<br>(x 10 <sup>9</sup> ) | Cathode<br>Heater<br>V/A | Reser-<br>voir<br>Heater<br>V/A | Peak<br>Forward<br>Grid<br>Voltage<br>egy<br>(Min) | Impe-<br>dence<br>of Grid<br>Circuits<br>g (Max) | EIA Type & Comments | Notes | Seated<br>Height x<br>Tube Width<br>(Inches) |
|----------|--------------------------------------|------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------|-------|----------------------------------------------|
| HY-2     | 8                                    | 100                                | 0.1                                     | 2                                   | 2.7                                                               | 6.3/3.5                  | Note 1                          | 175                                                | 1200                                             | JAN 7821            | 1     | 2.35 x 1.0                                   |
| HY-6     | 16                                   | 350                                | 0.5                                     | 6.5                                 | 5                                                                 | 6.3/7                    | 8.3/2.5                         | 150                                                | 1500                                             | JAN 7782            |       | 2 x 1.4                                      |
| HY-60    | 16                                   | 350                                | 0.5                                     | 6.5                                 | 5                                                                 | 6.3/7                    | 8.3/7                           | 150                                                | 1500                                             | JAN 7685A           |       | 2.4 x 1.4                                    |
| HY-61    | 16                                   | 350                                | 0.5                                     | 6.5                                 | 5                                                                 | 6.3/8.5                  | Note 1                          | 150                                                | 1500                                             |                     | 1     | 3.6 x 1.4                                    |
| HY-10    | 20                                   | 500                                | 0.5                                     | 8                                   | 10                                                                | 6.3/7.5                  | 8.3/4                           | 200                                                | 500                                              | JAN 7820            |       | 3.4 x 2                                      |
| HY-11    | 18                                   | 1600                               | 0.5                                     | 8                                   | 10                                                                | 6.3/7.5                  | 8.3/4                           | 200                                                | 500                                              |                     |       | 2.2 x 2.25                                   |
| HY-1A    | 18                                   | 500                                | 0.5                                     | 8                                   | 10                                                                | 8.3/11                   | Note 1                          | 175                                                | 500                                              | JANE813             | 1     | 5 x 2                                        |
| HY-1102  | 18                                   | 1000                               | 0.5                                     | 16                                  | 10                                                                | 6.3/7.5                  | 6.3/8                           | 20                                                 | 500                                              |                     | 2     | 2 x 2                                        |
| HY-3192  | 32                                   | 1000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 1500                                               | 250                                              |                     | 3     | 3.75 x 3.25                                  |
| HY-32    | 32                                   | 1500                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/18                   | 8.3/5.5                         | 450                                                | 400                                              |                     | 4     | 4 x 3.25                                     |
| HY-3204  | 32                                   | 1500                               | 1                                       | 25                                  | 40                                                                | 6.3/18                   | 8.3/8                           | 450                                                | 400                                              | ib to 10kA @ <1usec | 4     | 3 x 6                                        |
| 1802     | 25                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              | JAN 7322            | 4     | 4 x 3.25                                     |
| HY-3002  | 25                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              |                     |       | 4 x 3.25                                     |
| HY-3003  | 35                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              |                     |       | 4 x 3.25                                     |
| HY-3004  | 25                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              |                     |       | 4.75 x 3.25                                  |
| HY-3005  | 35                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              |                     | 3     | 4.75 x 3.25                                  |
| HY-3025  | 28                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 250                                              |                     |       | 4.25 x 3.25                                  |
| HY-3189  | 32                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 250                                              |                     |       | 3.75 x 3                                     |
| HY-5     | 40                                   | 5000                               | ß                                       | 125                                 | 180                                                               | 6.3/30                   | 4.5/11                          | 1300                                               | 100                                              | 8614                |       | 5 x 4.5                                      |
| HY-53    | 40                                   | 5000                               | 4                                       | 90                                  | 100                                                               | 6.3/30                   | 4.5/11                          | 1300                                               | 100                                              |                     | 3     | 5 x 4.5                                      |
| LS-3101S | 35                                   | 5000                               | 2                                       | 45                                  | 50                                                                | 6.3/18                   | 6.3/6                           | 500                                                | 250                                              |                     | 6     | 5.25 x 3                                     |
| LS-4101  | 40                                   | 12000                              | 3                                       | 55                                  | 50                                                                | 6.3/28                   | 6.3/6                           | 500                                                | 250                                              |                     | 3,6   | 8 x 3.5                                      |
| LS-4111  | 40                                   | 12000                              | 3                                       | 55                                  | 100                                                               | 6.3/28                   | 6.3/6                           | 500                                                | 250                                              |                     | 3.5,6 | 8.25 x 3.5                                   |

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

C. Burkhart & M. Kemp

### **Thyratrons - Definition of Terms**



#### TERMS USED TO CHARACTERIZE INDIVIDUAL PULSES

Peak Anode Voltage (epy): maximum positive anode voltage, with respect to the cathode.

Peak Inverse Anode Voltage (epx): maximum negative anode voltage, with respect to the cathode.

Peak Forward Anode Current (ib): maximum instantaneous positive anode current.

Peak Inverse Current (Ibx): maximum instantaneous negative anode current.

Pulse Width (tp): current pulse full-width at half-maximum.

Pulse Repetition Rate (prr): average number of pulses/second.

Current Rise Time (tr): time for the forward current to rise from 10% to 90% of its peak value.

Anode Fall Time: time for the forward anode voltage to collapse from 90% to 10% of its maximum value.

Anode Delay Time (tad): time interval between triggering and commutation (commutation is defined below). The precise reference points for this interval vary with the application.

Anode Delay Time Drift (Atad): gradual decrease in anode delay time that occurs as the thyratron warms up.

Jitter (tj): pulse-to-pulse variation in anode delay time.

### **Thyratrons - Definition of Terms**



#### TIME AVERAGED QUANTITIES

DC Average Current (Ib): forward current averaged over one second.

RMS Average Current (Ip): root-mean-square current averaged over one second.

Plate Breakdown Factor (Pb): numerical factor proportional to the power dissipated at the anode, averaged over one

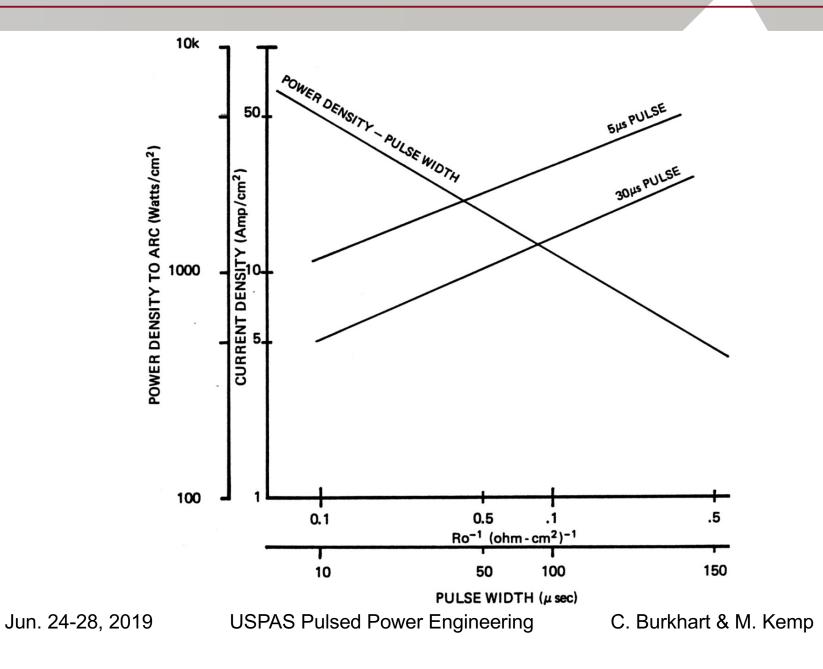
second. Pb = epy x ib x prr.

#### STRUCTURAL PARTS OF THE THYRATRON

Auxiliary Grid: grid placed between the control grid and cathode in some thyratrons. A small DC current (or a larger pulsed current) applied between Auxiliary Grid and cathode can be used to control the anode delay time. (Anode delay time is defined above). Thyratrons with auxiliary girds are called Tetrode Thyratrons.

Reservoir: maintains the gas pressure in the tube at a level which depends on the reservoir heater voltage.

#### GENERAL TERMINOLOGY


Static (Self) Breakdown Voltage (SBV): applied voltage at which a thyratron will break down spontaneously, without being triggered.

Commutation: transition from trigger breakdown to full closure of the thyratron.

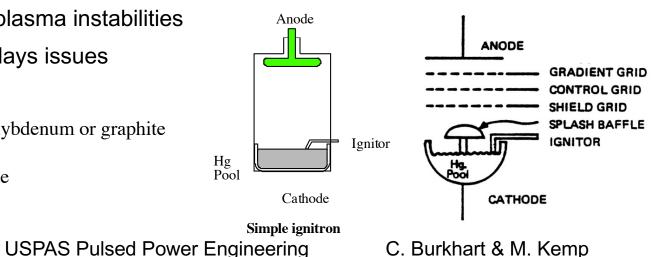
Recovery Time: time which must elapse after decay of the circuit current before anode voltage can be reapplied to the thyratron without causing self-breakdown. The maximum possible pulse repetition rate is the inverse of the recovery time. Grid Bias: negative DC voltage which may be applied to the control grid to speed up recovery.

Jun. 24-28, 2019 USPAS Pulsed Power Engineering C. Burkhart & M. Kemp

#### **Thyratron Tradeoffs**



21


SLAC

# Ignitron

- Mercury filled switch
- Low pressure device: ~0.001 Torr @ 70° F
- High voltage, high current (kA to 100's kA)
- Very simple device with many operational issues
  - Mounting (must be mounted vertically)
  - Vibration
  - Anode needs to be heated to keep mercury evaporated off
  - Ringing discharge affects lifetime
  - Has rep-rate limits and requires temperature control
- Operating voltage affected by tube pressure and electrode condition
- Current affected by plasma instabilities

Anode material - molybdenum or graphite

- Jitter and turn-on delays issues



Jun. 24-28, 2019

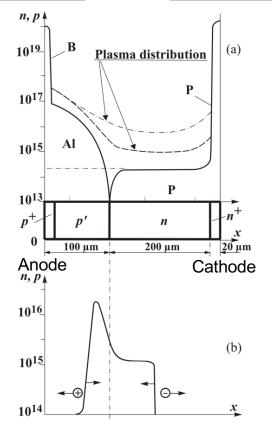
Grids - graphite

Igniter - boron carbide

22

# Plasma Opening Switch (POS)




- Initially, a high density plasma forms a low-conductivity channel (switch closed)
- Plasma conductivity is rapidly decreased, ~10 to 100 ns, opening the switch
- Opening mechanisms
  - Plasma erosion switch: plasma source is turned off, conductive particles are swept out by applied fields (plasma erodes), switch opens
  - Applied fields inhibit the flow of conductive particles (electrons) across switch
- Used primarily in effects simulators
- Voltage: >MV, Current: >MA

# **Solid-state Devices - General Observations**

- Low jitter (ns)
- Switching speed varies from very fast (ns) to slow(100's µs)
- Limited in peak power capability. High voltage requires series stacks and high peak current requires parallel arrays.
- Usually high average current capability (compared with thyratrons)
- Both closing devices and opening devices available
- Most can operate at high repetition rate
- Low cost in terms of average power rating
- Long lifetime if operated within peak ratings, but usually catastrophic failure when voltage ratings exceeded

# **Diode Opening Switch**

- Solid state equivalent to POS
- Forward bias junction, switch closed
- Reverse bias switch, carriers swept from junction, when carriers are depleted, switch is open
- Any diode will work, but, ideally junction carrier density remains constant until all remaining carriers are swept out of gap
  - Dependent on doping profile across junction
  - Carrier crossing time (500 V, Si junction):
    ~0.5 ns
    - Electrons ~3X faster than holes
  - Drift Step Recovery Diode/Device (DSRD), approximates ideal



DSRD: (a) design and "plasma" distribution, dc bias, pulse bias, (b) "plasma" distribution at start of reverse bias

Grekhov, et.al., 2004 PMC

C. Burkhart & M. Kemp

# **Thyristors**

- Closing switch
- Solid state analogy to thyratron
- Maximum voltage:
  - Silicon: ~6.5 kV, limited by defects
  - Silicon carbide: ~20 kV, not commercially available Gate
- Maximum current
  - RMS: ~5 kA
  - Pulsed: 10 to 100X (or more) greater (pulse length dependent)

i<sub>ak</sub>

A

 $i_{\rm G}\, {\downarrow}^G$ 

Κ

- Low forward drop, <3 V (typical), low loss
- Simple to trigger
- All types of thyristors can be triggered by applying high dV/dt
- Generally, slow switch for pulsed power applications

Anode

Cathode

TR ]

# **Thyristors (cont.)**

- Silicon Controlled Rectifier (SCR)
  - Simple, powerful, relatively inexpensive
  - Switching speed
    - Phase Control: intended for 50/60 Hz operation
    - Inverter grade: ~10 µs (typical)
  - Triggering
    - Low energy trigger switches device, will remain on as long as
      - Conducted > I threshold
    - Electrical
      - ~3 V
      - <mA small devices, <A largest devices</li>
    - Optical

# **Thyristors (cont.)**

- Closing/opening devices
  - Gate turn-off thyristor (GTO)
  - Integrated gate commutated thyristor (IGCT)
  - Limited use in pulsed power
    - Interrupting current << closing current
    - dl/dt limitations

### **Fast Thyristors**

- Higher energy trigger  $\rightarrow$  faster carrier injection and faster turn on
- Reverse blocking diode thyristor (RBDT) (Break over diode, BOD)
  - Triggered by high dV/dt ~  $10^{12}$  V/s
  - Turn on time < µs
- Photon initiated (optical) thyristor
  - Triggered by intense optical pulse that liberates carriers throughout junction
  - Turn on time << µs

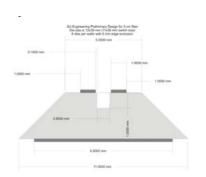



Fig. 2. End view drawings of optical thyristor McDonald, IPMC2006



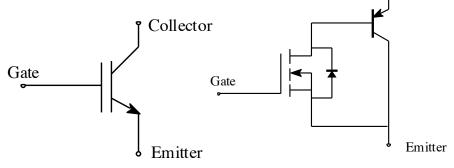
Fig. 3. Photograph of PIMM optical thyristor



Fig. 4. Photograph of Two-Switch Electrode assembly.

USPAS Pulsed Power Engineering

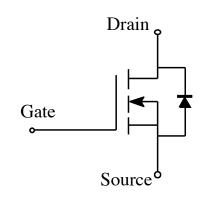
SLAO


# **Bulk Semiconductor Switches**



- Bulk semiconductor materials; Si, GaAs, diamond-like carbon, can be used as a switch
- Carriers can be produced through the bulk of the material by depositing energy; photons (laser) or electron beam, to trigger the switch
- If trigger induces carrier avalanching, then can only operate as a closing switch, if not avalanching, then removal of trigger source will cause switch to open
- Not commercially available at present, but subject to ongoing investigation and development
- Potential for very high power solid state switch

# **Power Transistors**


- Hard switch: closes and opens
- Bi-polar devices
  - Minority carrier devices
  - Conduction characterized by V<sub>CE</sub> < 3 V (typical)</li>
  - NPN/PNP power transistors generally replaced by Insulated Gate Bipolar Transistors (IGBT)
    - Lower drive power
    - Available at higher voltage, current and power
- Field effect transistors
  - Majority carrier devices
  - Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
  - Conduction characterized by  $R_{DS-ON} \sim \Omega$



Symbol

IGBT Equivalent Circuit

Collector



Symbol (N-type)

# IGBT

- Wide-spread use in power electronics → availability of high power modules
  - Voltages: 600 V, 1.2 kV, 1.7 kV, 3.3 kV, 4.5 kV, 6.5 kV
  - Currents: to ~kA average
    - Pulsed current, ~µs pulse duration, to ~10X greater
  - Configurations: single die, single switch-parallel die, chopper, bridge

# **IGBT Switching Characteristics**

- Turn on
  - Ultra-fast (single die): as fast as ~50 ns
  - Power modules: ~0.5 μs (with sophisticated triggering)
- Turn off
  - Initial turn off is fast, ~turn on time
  - Tail: following initial turn off, a low current tail (~ A to 10's of A) due to carrier recombination may persist for µs to 10's of µs, full voltage across device → high dissipation
- Switching losses typically dominate device dissipation, small devices may operate to ~MHz, power modules typically operate at 10 to 50 kHz or less

# **IGBT Switching**

- Insulated gate structure, capacitive load to trigger circuit
- Threshold (to turn on) ~5 V
- Maximum gate voltage ~30 V (higher voltage may punch through oxide)
- Typically bias gate to 10 15 V
  - Saturation current (V<sub>CE</sub> increases dramatically for I > I<sub>SAT</sub>)  $\alpha$  V<sub>GE</sub>
  - Low I<sub>SAT</sub> limits fault current, protects device/system
  - V<sub>CE</sub> only weakly dependent on V<sub>GE</sub>
- Optimum (fastest, lowest loss) triggering
  - 2-stage gate drive:
    - HV (50 to >100 V): initiates current flow to gate (parasitic L)
    - $2^{nd}$  ary drive holds gate at 10 15 V
  - Bi-polar, fast turn off requires inverse pulse
  - Does not significantly reduce tail
  - Turn off slowly from fault condition, may loose control if L dl/dt is too high

# **IGBT (cont.)**

- Easily damaged by reverse voltage (>100 V)
  - Include anti-parallel diode in circuit
  - Integrated into modules
- "Traction motor" modules
  - "Single wide": 12 chips: 8 IGBT/4 diode
  - Internal interconnections may promote oscillations between chips under fault conditions
- Exercise caution when connecting in parallel
  - Often have negative coefficient of V<sub>CE</sub> with temperature
  - Device carrying excess current than neighbors will get hotter, forward voltage will drop, and it will carry even more current

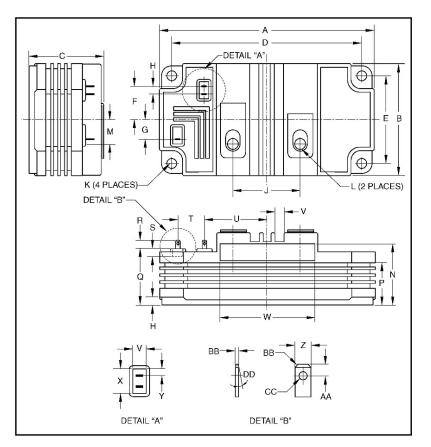
# **IGBT Reliability Considerations**

- Collector-Emitter voltage, V<sub>CE</sub>
  - Exceeding, even momentarily, will damage/destroy device
  - Usually limit nominal off-state voltage to 67% of  $V_{CE}$
- Cosmic ray withstand voltage
  - Statistical probability dies will be struck by cosmic ray, if V > withstand voltage, die will fail. Limits "normal" voltage across device.
  - Not always on data sheet, ask manufacturer, typically ~60% of V<sub>CE</sub>

## **IGBT Reliability Considerations (cont.)**

-SLAC

- Partial discharge rating/insulation capability
  - International standard sets minimum voltage cycle that results in 10 pC internal discharge for package rating (e.g. 3.3 kV device). Exceeding voltage will shorten device life.
- Thermal
  - Exceeding maximum die temperature will result in rapid failure of device
  - Thermal cycling
    - Die temperature variations (as device cycles on/off) fatigue bond wires
    - Manufacturer can provide data to determine impact on life for a calculated cycle


### **IGBT Data Sheet**



Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272



Single IGBTMOD™ HVIGBT Module 200 Amperes/6500 Volts





#### Description:

Powerex IGBTMOD<sup>™</sup> Modules are designed for use in switching applications. Each module consists of one IGBT Transistor in a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

#### Features:

Low Drive Power

□ Low V<sub>CE(sat)</sub>

Super-Fast Recovery

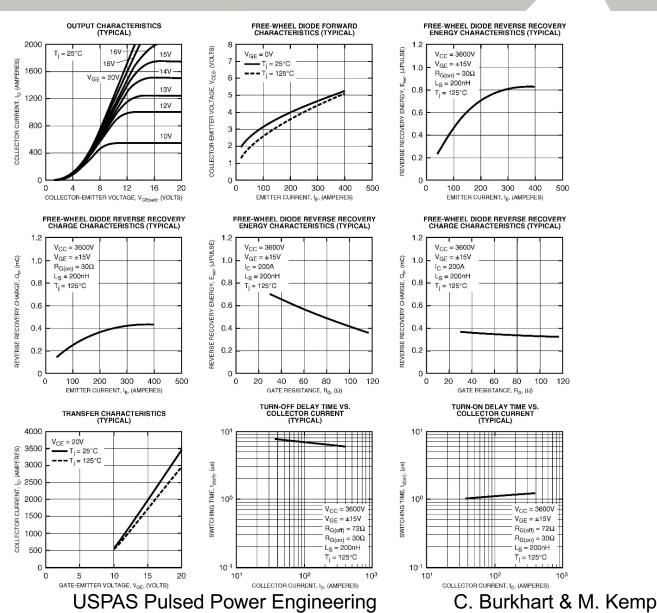
**USPAS** Pulsed Power Engineering

### **IGBT Data Sheet (cont.)**





Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

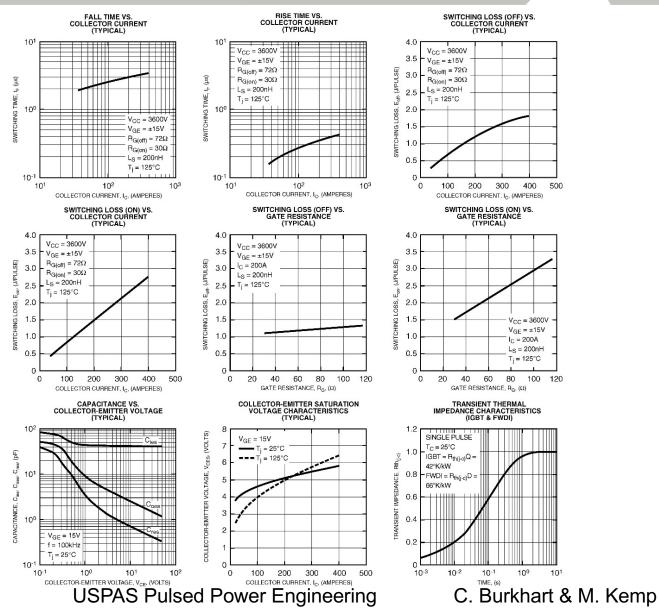

CM200HG-130H Single IGBTMOD™ HVIGBT Module 200 Amperes/6500 Volts

#### Absolute Maximum Ratings, $T_i = 25$ °C unless otherwise specified

| Ratings                                                                                                                            | Symbol           | CM200HG-130H | Units   |
|------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------|
| Junction Temperature                                                                                                               | Тj               | -40 to 150   | °C      |
| Storage Temperature                                                                                                                | T <sub>stg</sub> | -40 to 125   | °C      |
| Operating Temperature                                                                                                              | T <sub>opr</sub> | -40 to 125   | °C      |
| Collector-Emitter Voltage (V <sub>GE</sub> = 0V, $T_j$ = -40°C)                                                                    | V <sub>CES</sub> | 5800         | Volts   |
| Collector-Emitter Voltage ( $V_{GE} = 0V, T_j = +25^{\circ}C$ )                                                                    | V <sub>CES</sub> | 6300         | Volts   |
| Collector-Emitter Voltage (V <sub>GE</sub> = 0V, $T_j$ = +125°C)                                                                   | VCES             | 6500         | Volts   |
| Gate-Emitter Voltage (V <sub>CE</sub> = 0V)                                                                                        | V <sub>GES</sub> | ±20          | Volts   |
| Collector Current (DC, T <sub>c</sub> = 80°C)                                                                                      | lc               | 200          | Amperes |
| Peak Collector Current (Pulse)                                                                                                     | ICM              | 400*         | Amperes |
| Emitter Current** (T <sub>c</sub> = 25°C)                                                                                          | Ι <sub>Ε</sub>   | 200          | Amperes |
| Emitter Surge Current** (Pulse)                                                                                                    | IEM              | 400*         | Amperes |
| Maximum Collector Dissipation ( $T_c = 25^{\circ}C$ , IGBT Part, $T_{j(max)} \le 125^{\circ}C$ )                                   | PC               | 2900         | Watts   |
| Partial Discharge (V <sub>1</sub> = 6900 V <sub>rms</sub> , V <sub>2</sub> = 5100 V <sub>rms</sub> , 60 Hz (Acc. to IEC 1287))     | Q <sub>pd</sub>  | 10           | рС      |
| Max. Mounting Torque M8 Main Terminal Screws                                                                                       | -                | 133          | in-lb   |
| Max. Mounting Torque M6 Mounting Screws                                                                                            | —                | 53           | in-lb   |
| Module Weight (Typical)                                                                                                            | -                | 0.52         | kg      |
| Isolation Voltage (Charged Part to Baseplate, AC 60Hz 1 min.)                                                                      | Viso             | 10200        | Volts   |
| Maximum Turn-Off Switching Current                                                                                                 | -                | 400          | Amperes |
| $(V_{CC} \le 4500V, V_{GE} = \pm 15V, R_{G(off)} \ge 72\Omega, T_j = 125^{\circ}C)$                                                |                  |              |         |
| Short Circuit Capability, Maximum Pulse Width                                                                                      | -                | 10           | μs      |
| $(V_{CC} \le 4500V, V_{GE} = \pm 15V, R_{G(off)} \ge 72\Omega, T_j = 125^{\circ}C)$                                                |                  |              |         |
| Maximum Reverse Recovery Instantaneous Power ( $V_{CC} \le 4500V$ , di <sub>e</sub> /dt $\le 1000A/\mu$ s, T <sub>j</sub> = 125°C) | _                | 1200         | kW      |

USPAS Pulsed Power Engineering

### **IGBT Data Sheet (cont.)**




Jun. 24-28, 2019

40

SLA

### **IGBT Data Sheet (cont.)**



Jun. 24-28, 2019

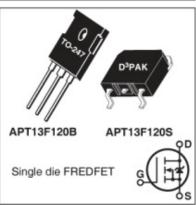
41

### MOSFET



- Fastest commercial solid state switch available
  - Intrinsic turn on/off time ~ns set by R<sub>DS-ON</sub>C<sub>OUTPUT</sub> time constant (carrier junction crossing time much faster)
  - Effective switching time limited by input capacitance, stray packaging inductance, and dl<sub>S</sub>/dt to ≥10 ns
- Maximum voltage: 1200 V
  - Avalanche rated, limited excursion to  $V > V_{DSS}$  will not damage device
  - Can operate at near V<sub>DSS</sub>
- Maximum current: ~0.1 kA (higher for modules and lower voltage FETs)
  - Pulsed current limited to ~4X average rating due to increase in  $R_{DS-ON}$
- "Intrinsic" reverse body diode, acts as anti-parallel diode
  - FREDFET: improved reverse body diode, soft recovery
- Well suited for parallel operation, positive coefficient of  $V_{\text{DS}}$  with temperature

### **MOSFET Data Sheet**




### APT13F120B APT13F120S

1200V, 13A, 1.40 $\Omega$  Max, t<sub>rr</sub>,  $\leq$  250ns

### N-Channel FREDFET

Power MOS 8<sup>---</sup> is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced  $t_{rr}$ , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of  $C_{rss}/C_{iss}$  result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.



#### FEATURES

- · Fast switching with low EMI
- · Low trr for high reliability
- · Ultra low Crss for improved noise immunity
- · Low gate charge
- · Avalanche energy rated
- RoHS compliant 🥔

#### **TYPICAL APPLICATIONS**

- · ZVS phase shifted and other full bridge
- Half bridge
- · PFC and other boost converter
- Buck converter
- · Single and two switch forward
- Flyback

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

| JL |  |
|----|--|
|    |  |

| Absolute        | Maximum Ratings                                   |         |      |
|-----------------|---------------------------------------------------|---------|------|
| Symbol          | Parameter                                         | Ratings | Unit |
| 1               | Continuous Drain Current @ $T_{C} = 25^{\circ}C$  | 13      |      |
| D               | Continuous Drain Current @ $T_{c} = 100^{\circ}C$ | 8       | A    |
| I <sub>DM</sub> | Pulsed Drain Current <sup>®</sup>                 | 50      | 1    |
| V <sub>GS</sub> | Gate-Source Voltage                               | ±30     | V    |
| E <sub>AS</sub> | Single Pulse Avalanche Energy®                    | 1070    | mJ   |
| IAR             | Avalanche Current, Repetitive or Non-Repetitive   | 7       | A    |

#### Thermal and Mechanical Characteristics

| Symbol                           | Characteristic                                         | Min | Тур  | Max  | Unit         |  |
|----------------------------------|--------------------------------------------------------|-----|------|------|--------------|--|
| P <sub>D</sub>                   | Total Power Dissipation @ $T_C = 25^{\circ}C$          |     |      | 625  | W            |  |
| R <sub>eJC</sub>                 | Junction to Case Thermal Resistance                    |     |      | 0.20 | °C/W         |  |
| R <sub>ecs</sub>                 | Case to Sink Thermal Resistance, Flat, Greased Surface |     | 0.11 |      |              |  |
| T <sub>J</sub> ,T <sub>STG</sub> | Operating and Storage Junction Temperature Range       | -55 |      | 150  | °C           |  |
| TL                               | Soldering Temperature for 10 Seconds (1.6mm from case) |     |      | 300  | <sup>c</sup> |  |
| W <sub>T</sub> Package Weight    | Deckage Weight                                         |     | 0.22 |      | oz           |  |
|                                  | Fackage weight                                         |     | 6.2  |      | g            |  |
| Torque                           | Mounting Torque (TO-247 Package), 6-32 or M3 screw     |     |      | 10   | in·lbf       |  |
|                                  | Nounting Torque (TO-247 Fackage), 6-32 of M3 screw     |     |      | 1.1  | N∙m          |  |

(Microsemi Website - http://www.microsemi.com)

Jun. 24-28, 2019



| Static Chara                        | acteristics T <sub>J</sub> = 25           | °C unless otherwise specified             |                        |      |      | APT13F120B_S |       |  |
|-------------------------------------|-------------------------------------------|-------------------------------------------|------------------------|------|------|--------------|-------|--|
| Symbol                              | Parameter                                 | Test Conditions                           |                        | Min  | Тур  | Max          | Unit  |  |
| VBR(DSS)                            | Drain-Source Breakdown Voltage            | $V_{GS} = 0V, I_D = 250\mu A$             |                        | 1200 |      |              | V     |  |
| $\Delta V_{BR(DSS)} / \Delta T_{J}$ | Breakdown Voltage Temperature Coefficient | Reference to 25°C, I <sub>D</sub> = 250µA |                        |      | 1.41 |              | V/°C  |  |
| R <sub>DS(on)</sub>                 | Drain-Source On Resistance <sup>③</sup>   | $V_{GS} = 10V, I_D = 7A$                  |                        |      | 1.11 | 1.40         | Ω     |  |
| V <sub>GS(th)</sub>                 | Gate-Source Threshold Voltage             | $V_{GS} = V_{DS}, I_{D} = 1mA$            |                        | 3    | 4    | 5            | V     |  |
| $\Delta V_{GS(th)} / \Delta T_J$    | Threshold Voltage Temperature Coefficient |                                           |                        |      | -10  |              | mV/°C |  |
| 1                                   | Zero Gate Voltage Drain Current           | V <sub>DS</sub> = 1200V                   | T <sub>J</sub> = 25°C  |      |      | 250          | μA    |  |
| DSS                                 | Zero Gate Voltage Drain Current           | $V_{GS} = 0V$                             | T <sub>J</sub> = 125°C |      |      | 1000         |       |  |
| I <sub>GSS</sub>                    | Gate-Source Leakage Current               | V <sub>GS</sub> = ±30V                    |                        |      |      | ±100         | nA    |  |

#### **Dynamic Characteristics**

#### T<sub>J</sub> = 25°C unless otherwise specified

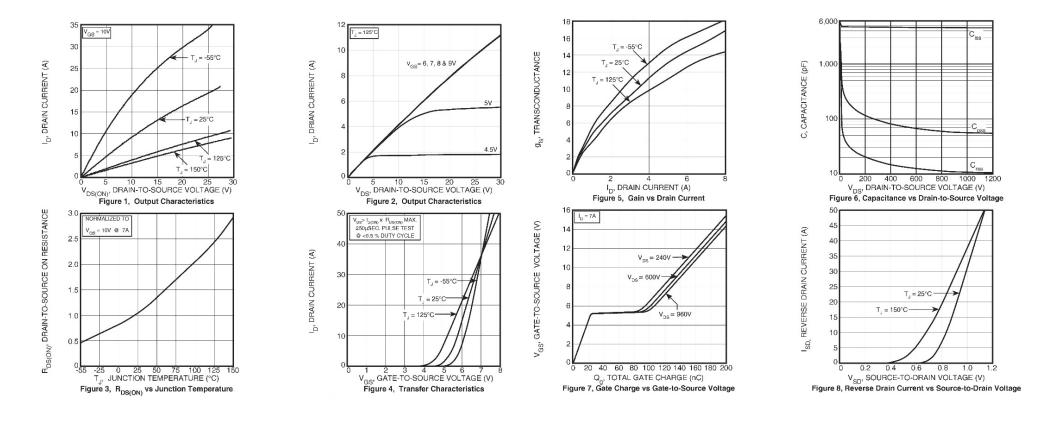
| Symbol               | Parameter                                    | Test Conditions                             | Min | Тур  | Max | Unit |
|----------------------|----------------------------------------------|---------------------------------------------|-----|------|-----|------|
| g <sub>ts</sub>      | Forward Transconductance                     | $V_{DS} = 50V, I_{D} = 7A$                  |     | 15   |     | S    |
| C <sub>iss</sub>     | Input Capacitance                            |                                             |     | 4765 |     |      |
| Crss                 | Reverse Transfer Capacitance                 | $V_{GS} = 0V, V_{DS} = 25V$<br>f = 1MHz     |     | 55   |     |      |
| C <sub>oss</sub>     | Output Capacitance                           |                                             |     | 350  |     |      |
| $C_{_{O(Cr)}} @$     | Effective Output Capacitance, Charge Related | $V_{GS} = 0V$ , $V_{DS} = 0V$ to 800V       |     | 135  |     | pF   |
| C <sub>o(er)</sub> © | Effective Output Capacitance, Energy Related |                                             |     | 70   |     |      |
| Qg                   | Total Gate Charge                            | V 01-40V 1 74                               |     | 145  |     |      |
| Q <sub>gs</sub>      | Gate-Source Charge                           | $V_{GS} = 0$ to 10V, $I_D = 7A$ ,           |     | 24   |     | nC   |
| Q <sub>gd</sub>      | Gate-Drain Charge                            | $V_{DS} = 600V$                             |     | 70   |     | 1    |
| t <sub>d(on)</sub>   | Turn-On Delay Time                           | Resistive Switching                         |     | 26   |     |      |
| t,                   | Current Rise Time                            | V <sub>DD</sub> = 800V, I <sub>D</sub> = 7A |     | 15   |     | ne   |
| t <sub>d(off)</sub>  | Turn-Off Delay Time                          | $R_{G} = 4.7 \Omega^{(3)}, V_{GG} = 15V$    |     | 85   |     | ns   |
| t,                   | Current Fall Time                            |                                             |     | 24   |     |      |

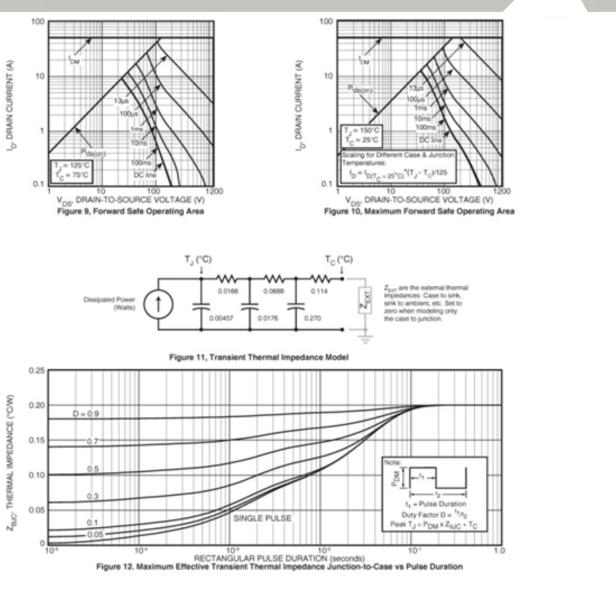
Jun. 24-28, 2019

| Symbol          | Parameter                                          | Test Con                                               | Test Conditions                                                                          |  |      | Max | Unit |
|-----------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------|--|------|-----|------|
| I <sub>s</sub>  | Continuous Source Current<br>(Body Diode)          | MOSFET symbol showing the                              | IJ.                                                                                      |  |      | 13  |      |
| I <sub>SM</sub> | Pulsed Source Current<br>(Body Diode) <sup>①</sup> | integral reverse p-n<br>junction diode<br>(body diode) |                                                                                          |  |      | 50  | A    |
| V <sub>SD</sub> | Diode Forward Voltage                              | I <sub>SD</sub> = 7A, T <sub>J</sub> = 25              | $I_{SD} = 7A, T_{J} = 25^{\circ}C, V_{GS} = 0V$                                          |  |      | 1.0 | V    |
| +               | Deverse Desevery Time                              |                                                        | T <sub>J</sub> = 25°C                                                                    |  |      | 250 |      |
| t <sub>rr</sub> | Reverse Recovery Time                              |                                                        | T <sub>J</sub> = 125°C                                                                   |  |      | 520 | ns   |
| 0               | Barran Barran Ohama                                | I <sub>SD</sub> = 7A <sup>3</sup>                      | T <sub>J</sub> = 25°C                                                                    |  | 1.12 |     |      |
| Q <sub>rr</sub> | Reverse Recovery Charge                            | di <sub>SD</sub> /dt = 100A/µs                         | T <sub>J</sub> = 125°C                                                                   |  | 3.03 |     | μC   |
| 1               |                                                    | V <sub>DD</sub> = 100V                                 | T <sub>J</sub> = 25°C                                                                    |  | 10   |     |      |
| rrm             | Reverse Recovery Current                           |                                                        | T <sub>J</sub> = 125°C                                                                   |  | 13.5 |     | A    |
| dv/dt           | Peak Recovery dv/dt                                | 00                                                     | $I_{SD} \le 7A$ , di/dt $\le 1000A/\mu s$ , $V_{DD} = 800V$ ,<br>$T_{,1} = 125^{\circ}C$ |  |      | 25  | V/ns |

#### Course Duply Diade Chavesteristics

Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.


(2) Starting at T<sub>1</sub> = 25°C, L = 43.59mH, R<sub>G</sub> = 4.7Ω, I<sub>AS</sub> = 7A.

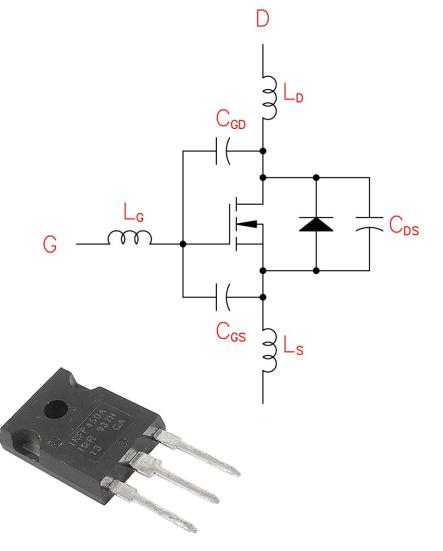

- (3) Pulse test: Pulse Width < 380µs, duty cycle < 2%.</p>
- ④ C<sub>o(cr)</sub> is defined as a fixed capacitance with the same stored charge as C<sub>OSS</sub> with V<sub>DS</sub> = 67% of V<sub>(BRIDSS</sub>.
- (5) C<sub>o(er)</sub> is defined as a fixed capacitance with the same stored energy as C<sub>OSS</sub> with V<sub>DS</sub> = 67% of V<sub>(BR)DSS</sub>. To calculate C<sub>o(er)</sub> for any value of  $V_{DS}$  less than  $V_{(BR)DSS}$  use this equation:  $C_{o(er)} = -2.17E-7/V_{DS}^2 + 2.63E-8/V_{DS} + 3.74E-11$ .

(6) R<sub>c</sub> is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)

Microsemi reserves the right to change, without notice, the specifications and information contained herein.

3-2007 < Rev 050-8131





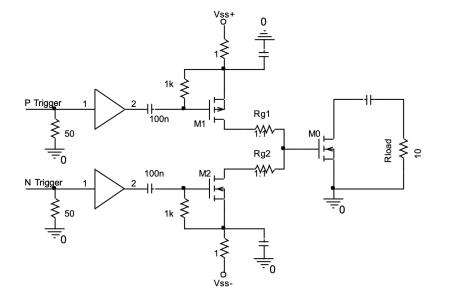

Jun. 24-28, 2019

## **MOSFET Model for Fast Switching**

- Data sheet information -
  - Drain-source breakdown voltage: V<sub>DSS</sub>
  - Drain current •
    - Continuous: I<sub>D</sub>
    - Pulsed: I<sub>DM</sub>
  - R<sub>DS-ON</sub> @ I<sub>D</sub>
  - Input capacitance:  $C_{ISS} = C_{GD} + C_{GS}$
  - Output capacitance: C<sub>OSS</sub> = C<sub>DS</sub>
  - Reverse transfer capacitance (Miller capacitance):  $C_{RSS} = C_{GD}$
- Typical values for 1 kV TO-247/264
  - L<sub>D</sub>: <1 nH
  - L<sub>G</sub> & L<sub>S</sub>: ~6 nH
  - C<sub>ISS</sub>: ~few nF
  - C<sub>OSS</sub> & C<sub>RSS</sub>: ~few 100 pF

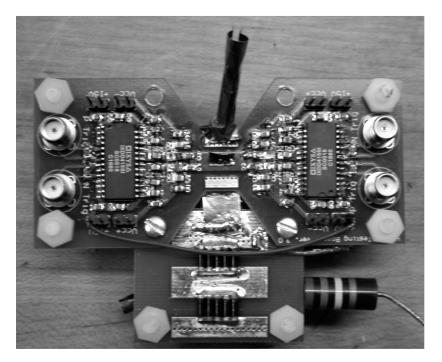







- Input capacitance and parasitic inductance form resonant circuit
  - $\omega < 10^9$ , therefore  $\tau_r \sim$  few ns will excite the resonance
  - Z ~ few ohm, therefore need significant gate resistance to damp
- Inductive voltage due to rising source current:  $L_S dI_S/dt$ 
  - 50 A in 10 ns would induce ~30 V across source inductance
  - Inductive voltage subtracts from applied gate voltage
- Effects are internal to package
  - May not see true causes of slow MOSFET turn on

### **MOSFET Fast Switching**


- Remediations
  - Use a bi-polar high voltage gate drive (limited by gate breakdown)
  - Use high gate drive resistance (balance with drive current requirements)
  - Use a larger number of smaller MOSFETs in parallel
  - Integrate driver into MOSFET package
    - Commercial units show little gain
    - Hybrid circuits can achieve ~1 ns risetime

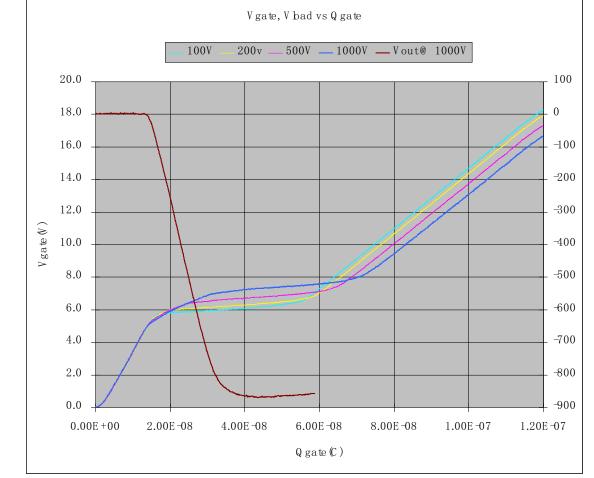
### Hybrid MOSFET/Driver for Ultra-Fast Switching



Hybrid schematic: totem pole driver, output MOSFET, and load

Tang & Burkhart, IPMC2008




Hybrid circuit; dual drivers on each side of PCB, MOSFET on bottom-side of PCB, load at bottom of photo

Jun. 24-28, 2019

USPAS Pulsed Power Engineering

# Interpretation of Hybrid MOSFET Data During Nanosecond Switching

- No switching until V<sub>GS</sub> exceeds threshold
- Switching is effectively complete before Miller capacitance is fully charged (~20 nC < Q < 60 nC)</li>
- Ultra-fast is unlike normal MOSFET switching
  - Switching time depends on "linear" behavior of device
  - Sensitive to
    - Transistor gain, g<sub>m</sub>
    - Die temperature
    - Device-to-device variations



Gate and drain-source voltage as a function of gate charge, for a range of initial MOSFET voltage

## **High Power Switching with Solid State Switches**

- Peak switching power of commercial devices is limited
  - Array, series/parallel, devices to increase power
  - Use alternative topologies
- Arrays
  - Parallel
    - MOSFETs well suited
    - IGBTs may present challenges
  - Series
    - Prevent overvoltage of individual elements under ALL CONDITIONS
      - Derate device operating: reduces effective device power
      - Add protection (e.g. RC snubber): reduces switching speed

SL AG

# **Commercial Suppliers of Solid State Switches & Drivers**

### - Power Semiconductors (MOSFETs, IGBTs, Thyristors)

- Microsemi: <u>http://www.microsemi.com/</u> (APT devices)
- Infineon: <u>http://www.infineon.com/</u> (Eupec devices)
- Powerex: <u>http://www.pwrx.com/</u> (Powerex & Mitsubishi devices)
- DYNEX: <u>http://www.dynexsemi.com/</u>
- ST Microelectronics: <u>http://www.st.com/web/en/home.html</u>
- Westcode: <u>http://www.westcode.com/</u>
- International Rectifier: <u>http://www.irf.com/</u>
- Toshiba: http://www.toshiba.com/taec/
- ABB: <u>http://www.abb.com/product/it/9AAC910029.aspx</u>
- IXYS: <a href="http://www.ixys.com/">http://www.ixys.com/</a> (IXYS & DEI devices)

### - Driver Circuits

- IXYS: <u>http://www.ixys.com/</u>
- Vishay: <a href="http://www.vishay.com/company/brands/siliconix/">http://www.vishay.com/company/brands/siliconix/</a> (Siliconix devices)
- Intersil: <u>http://www.intersil.com/en.html</u> (Elantec devices)